The Golay-Viterbi Concatenation Scheme

E. R. Berlekamp®

Communications Systems Research Section

This article examines in detail the Golay-Viterbi concatenation scheme which
has been proposed for use for the nontelevision scientific data portion of the
Mariner Jupiter/Saturn telemetry. The simplest form of the scheme makes no
use of the memory in the noise caused by the Viterbi decoder; in this article we
will demonstrate that it is possible to utilize this memory to obtain improved

performance.

It has been proposed that scientific data on the M]JS77
project be given more noise protection than the TV data
and that this can be achieved by using the Golay code,
interleaved to a depth of j (j =10 to 25) to achieve an
overall block length of 24j. The 24j bits in any overall
block may be conveniently arranged in j rows of 24 bits
each, where each row is a code word in the Golay code.
The bits are transmitted consecutively, column by col-
umn. The outer channel through which these blocks are
transmitted contains a convolutional encoder and a
Viterbi decoder. Even if the space channel over which
the inner convolutional code is transmitted is memory-
less, the phenomenon of error propagation in the Viterbi
decoder will cause the outer channel to be bursty. How-
ever, the interleaved nature of the outer code distributes
an error burst among the j different Golay codes, so that
most bursts do not cause more than a few errors in any

1Consultant to JPL from U, C. Berkeley.

JPL TECHNICAL REPORT 32-1526, VOL. XVi

particular Golay code word. It is therefore possible to
correct many common error patterns by decoding the
outer code row by row.

Of course, there are some error patterns which this
procedure will fail to correct. The most common such
error patterns will cause one or more rows to be received
as a word with highly improbable syndrome, correspond-
ing to an error pattern of weight 4 or more with no simple
burst explanation. When this rare event occurs, we sug-
gest a refined algorithm for redecoding the entire block
of 24j bits. This algorithm would probably be pro-
grammed on a computer rather than implemented in
hardware. Since it would be used only on those rare
blocks on which an error was detected by the Golay
code, the refined algorithm need not be as fast as the
conventional row-by-row decoding algorithm operating
on the output of the Viterbi decoding hardware.

125



The most effective attack is to go back to the original
data and reexamine the decisions made by the Viterbi
decoder in more detail. The goal of this reexamination
is to erase those bits on which the decoding decisions
were close. Once this has been done, it will be quite
easy for the Golay code to correct the erasures as well
as the small number of errors which might remain. It is
well known that if there are no errors present, any linear
binary code with minimum distance d can correct all
patterns of d — 1 or fewer erasures, and hence, that the
extended (24, 12) Golay code can correct any pattern
of not more than 7 erasures. The easiest way to accom-
plish this erasure decoding up to minimum distance is
to set all erasure bits to 0, try to decode, then set all
erased bits to 1, and try to decode again. Of course, one
attempt or the other must succeed in correcting an “error”
pattern of weight less than d/2 in the erased positions.

It is less well known that linear codes typically have
much greater erasure correction capabilities than indi-
cated by the minimum distance. In particular, when
there are no errors, the Golay code is not only capable
of correcting all patterns of 7 erasures, it can also correct
322/323 of the patterns of 8 erasures as well as most
patterns of 9 or 10 erasures, 286/323 of the possible pat-
terns of 11 erasures and over half of the patterns of 12
erasures. In other words, erasures are less than half as
difficult to correct as errors. A program for correcting
the erasures need only solve simultaneous linear equa-
tions over GF(2).

We now comment on the problem of simulating a
refined Viterbi decoder which will erase those message
bits about which it is not too sure. Recall that the Viterbi
decoder makes two kinds of errors, the so-called “decod-
ing” errors, which arise when its estimate of the last bit
in the encoder’s shift register is incorrect, and “memory
truncation errors,” which arise because its memory of
4 or 5 constraint lengths is occasionally insufficient. The
latter type of error appears to be considerably less fre-
quent than the former, and if necessary could be further
reduced by using a longer memory in the simulator.

To detect the “decoding” errors, one might design a
modified Viterbi decoder in which each original register
was replaced by a list of L registers holding the L most
probable message sequences consistent with the appro-
priate hypothesis about the current contents of the
encoder’s shift register. Even with L = 2, this complicates
the simulating program considerably, because most deci-
sions made by the Viterbi decoder are very close. How-
ever, this is usually not because the decoder is on the

126

verge of making an error, but because the decision is
between two very improbable sequences somewhere in
the trellis, and neither of these sequences is destined
to reach the output anyway.

Since the original sequence will have already been
processed by the Linkabit decoder anyway, the simplest
way to simulate a decoder with list 2 would be to begin
by re-encoding the sequence that was decoded on the
first pass and subtract it from the original.

The simulator’s task of finding good second-choice
message sequences is now simplified by its a priori
knowledge that the first choice will be the all-zero
sequence. Because of this fact, the simulator need not
differ from the conventional Viterbi decoder except in
the number of its outputs. In addition to the estimated
message sequence, which we know will be all-zero except
in the rare events when the simulator is able to correct a
memory truncation error, there are three other outputs
which are of considerable importance. These are the
likelihood of the message register containing the (first
choice) all-zero sequence, the likelihood of the message
register containing the (second choice) 1000 . . . 0
sequence, and the full previous message sequence cor-
responding to this second choice. This sequence repre-
sents the most probable error event under the hypothesis
that the error event ends with the bit about to pass out
of the message register.

When the likelihoods of the two candidates are close,
then a likely error event has been detected and the
appropriate bits of the decoded message sequence should
be erased.

Of course, those error events which occur when two
or more wrong paths are more probable than the correct
one will not be erased by the algorithm just described.
Such events would cause a decoding error even if the
decoder were allowed a list of two candidates. When
the rate of the code is sufficiently low (or, equivalently,
if the signal-to-noise ratio is sufliciently high), then a
list-of-two error of this type is much less probable than
a conventional list-of-one error. However, when the rate
of the code is sufficiently high (or, equivalently, the
signal-to-noise ratio is sufficiently low), then most list-of-
one errors are also list-of-two errors.

Fortunately, the three outputs of the simulator contain
sufficient information to determine, with high probability,
which type of error has occurred. When the likelihoods
of both candidates are relatively high, then a list-of-two

JPL TECHNICAL REPORT 32-1526, VOL. XVi



error is very unlikely and a decoding error can almost
surely be prevented by erasing the second-choice candi-
date message pattern. For example, if this is . . . 00010101,
then only the three bits indicated by the ones need be
erased. The two zero bits within the likely error event
were decoded correctly, independently of whether this
likely error event actually occurred. However, if the
likelihoods of both candidates are relatively low, then
the selected choice represents the best of a bad lot, and
a list-of-two error is almost as likely as a list-of-one error.
Very probably, the third-, fourth-, and fifth-place choices
rank very close to the second. Under these circumstances,
the only way the Viterbi simulator can be fairly sure of
making no error is to erase all of the bits within the burst
corresponding to the second choice, and possibly a few
previous bits as well. T cannot think of any good simple
algorithm to determine how far back to extend the erasure
burst. One sophisticated approach would be to couple
this simulator with another simulator which decoded the
convolutional code backwards .in time. Just as the out-
puts of the forward-in-time Viterbi simulator give good
estimates of the probabilities of error events ending at
each message digit, the outputs of the reverse-in-time
Viterbi simulator would give good estimates of the
probabilities of error events beginning at each message
digit. By combining the two, a good estimate of the
location and extent of list-of-two error events could be
obtained. The message bits within such a span could
then be erased.

There remains the problem of selecting the values of
likelihoods which should cause the simulator to erase.
The selection of these parameters should be governed
by the erasure and error-correct capabilities of the outer
code.

With 3 erasures in a block of length 24, the Golay
code can still correct any pattern of two or fewer errors.
A single error can be corrected in the presence of any
pattern of 5 erasures and most patterns of 6 erasures.
Hence, if the Viterbi simulator erases up to 15 to 25%
of the bits in a long block, there is still an excellent
chance that the outer interleaved Golay code will be able
to correct these erasures and any error events that were
undetected by the simulator as well. If the outer code
still fails to correct the erased Viterbi output, then there
are still further, even more complicated attacks that
might be tried. For example, one might try to use the
constraint that all bits in a candidate Viterbi error event
corresponding to a likely second choice must be the same.
However, the number of blocks not decoded correctly
by the refined outer decoder when suitable bits of its
input have been erased is so small that such further
refinements may not be necessary.

Other work on causing the Viterbi decoder to output
erasures has been done by Clark and Davis (Ref. 1).

Reference

1. Clark, G. C,, Jr., and Davis, R. C., “Two Recent Applications of Error-Correc-
tion Coding to Communications Systems Design,” IEEE Trans. on Comm.

Tech., Vol. 19, pp. 856-863, 1971.

JPL TECHNICAL REPORT 32-1526, VOL. XVI

127



